

Artificial Intelligence

VERY BRIEF INTRODUCTION

© Know-Center GmbH, www.know-center.at

INTRODUCTION

© Know-Center GmbH • Research Center for Data-Driven Business and Big Data Analytics • 2018

HISTORY OF ARTIFICIAL INTELLIGENCE

© Know-Center GmbH • Research Center for Data-Driven Business and Big Data Analytics • 2018

TYPES OF ARTIFICIAL INTELLIGENCE

- Strong AI (full AI, artificial general intelligence)
 - · Machines act as if they were able to reason
- Weak AI (narrow AI, applied AI)
 - Pattern-based AI, data-driven AI
 - "Capability of machines to imitate intelligent human behaviour"
 - Machines support humans in relatively simple tasks
- Artificial super intelligence

needed

results!

STRONG AI

Al is often associated

with intelligent agents

- Test of the (strong) AI
 - Turing test
 - Can a human distinguish between a human and the AI?
 - Reverse turing test
 - CAPTCHA
 - Lovelance test
 - Human asks the machine for a creative work, e.g. poem, picture, ...

KNOW Center

MAIN APPROACHES

- Main approaches to (weak) AI
 - Logic and rules
 - Expert systems
 - Data-driven, pattern-based
 - Machine learning

- Logic-based AI
 - Rules formulated by human experts
 - Knowledge represented in a formalised way
 - Decisions can be explained
 - Allows to automate processes
 - E.g. Workflow processes

- Pattern-based AI
 - Machine identify patterns within data
 - Based on mathematical/statistical models
 - And assumptions
 - Decisions are often hard to explain
 - Also profits from expert knowledge (hybrid models)

- If a typical person can do a mental task with less than one second of thought, we can probably automate it using AI either now or in the near future.
 - Andrew Ng

MARKETING OF AI

- Al as a marketing tool, for example
 - IBM Watson
 - Jeopardy!
 - Google Alpha Go
 - Beats human pro player

- Two main reasons for break-through in recent times
 - 1. Larger data sets
 - 2. Increase in computational power
 - Distributed computing

MACHINE LEARNING

MACHINE LEARNING, DATA SCIENCE

- Machine learning
 - Making use of (large) amounts of data
 - "Machine programs itself"
- Data science
 - Making sense (insights) out of data

CHALLENGES OF MACHINE LEARNING

- Typically clean, unambiguous data
- Interpretable models
 - Understand why the machine made a decision
- Skills
 - Select appropriate approaches
 - Put results in context

"Machine learning can't get something from nothing...what it does is get more from less." – Pedro Domingo.

TYPES OF MACHINE LEARNING

- Supervised learning
 - Response for a given input
 - $A \rightarrow B$
- Unsupervised learning
 - Find pattern in data
- Reinforcement learning
 - Learn via interaction with environment

"We are drowning in information and starving for knowledge" -- John Naisbitt.

Source: https://www.techemergence.com/what-is-machine-learning/

DEEP LEARNING OVERVIEW

- Synonymous with AI
 - Typically neural networks
- Expensive to compute
 - Amount of data
 - Amount of computational resources
- Impressive results

Source: https://www.techemergence.com/what-is-machine-learning/

Deep learning is not "a universal solvent, but one tool among many" -- Gary Marcus.

EXAMPLE OF DEEP LEARNING

- Early classification with deep learning
 - Detect gestures of sign language
 - Based on sensory data
 - Results
 - 65% of maximal accuracy with only ~1.5% of the full data!

Timeseries length (% of total)

SOURCES

- Artificial Intelligence: A Modern Approach
 - Stuart Russell, Peter Norvig
- https://www.slideshare.net/HarrySurden/harry-surden-artificial-intelligence-and-law-overview
- https://www.slideshare.net/EdurekaIN/what-is-artificial-intelligence-artificial-intelligence-tutorial-forbeginners-edureka/16-Copyright_2017_edureka_andor_its
- http://kti.tugraz.at/staff/denis/courses/kddm1/
- http://kti.tugraz.at/staff/rkern/courses/kddm2/

AUSTRIA'S LEADING RESEARCH CENTER FOR DATA-DRIVEN BUSINESS AND BIG DATA ANALYTICS

Prof. Stefanie Lindstaedt General Manager office@know-center.at

Roman KernWolfgang KienreichArea ManagerDirector Businessrkern@know-center.atwkien@know-center.at

Know-Center GmbH

Research Center for Data-Driven Business and Big Data Analytics

Inffeldgasse 13/6 8010 Graz, Austria

Firmenbuchgericht Graz FN 199 685 f UID: ATU 50367703

gefördert durch das Programm COMET (Competence Centers for Excellent Technologies), wir danken unseren Fördergebern:

© Know-Center GmbH